Phonon anharmonicity of rutile TiO2studied by Raman spectrometry and molecular dynamics simulations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations

Raman spectra of rutile titanium dioxide (TiO2) were measured at temperatures from 100 to 1150 K. Each Raman mode showed unique changes with temperature. Beyond the volume-dependent quasiharmonicity, the explicit anharmonicity was large. A new method was developed to fit the thermal broadenings and shifts of Raman peaks with a full calculation of the kinematics of three-phonon and four-phonon p...

متن کامل

Phonon anharmonicity of rutile SnO2 studied by Raman spectrometry and first principles calculations of the kinematics of phonon-phonon interactions

Raman spectra of rutile tin dioxide (SnO2) were measured at temperatures from 83 to 873 K. The pure anharmonicity from phonon-phonon interactions was found to be large and comparable to the quasiharmonicity. First-principles calculations of phonon dispersions were used to assess the kinematics of three-phonon and four-phonon processes. These kinematics were used to generate Raman peak widths an...

متن کامل

Raman spectrometry study of phonon anharmonicity of hafnia at elevated temperatures

Raman spectra of monoclinic hafnium oxide HfO2 were measured at temperatures up to 1100 K. Raman peak shifts and broadenings are reported. Phonon dynamics calculations were performed with the shell model to obtain the total and partial phonon density of states, and to identify the individual motions of Hf and O atoms in the Raman modes. Correlating these motions to the thermal peak shifts and b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2012

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.85.094305